在tensorflow中,我们可以使用 tf.device() 指定模型运行的具体设备,可以指定运行在GPU还是CUP上,以及哪块GPU上。

设置使用GPU

使用 tf.device('/gpu:1') 指定Session在第二块GPU上运行:

import tensorflow as tf
 
with tf.device('/gpu:1'):
  v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1')
  v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2')
  sumV12 = v1 + v2
 
  with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
    print sess.run(sumV12)

ConfigProto() 中参数 log_device_placement=True  会打印出执行操作所用的设备,以上输出:

详解tf.device()指定tensorflow运行的GPU或CPU设备实现

如果安装的是GPU版本的tensorflow,机器上有支持的GPU,也正确安装了显卡驱动、CUDA和cuDNN,默认情况下,Session会在GPU上运行:

import tensorflow as tf
 
v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1')
v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2')
sumV12 = v1 + v2
 
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
  print sess.run(sumV12)

默认在GPU:0上执行:

详解tf.device()指定tensorflow运行的GPU或CPU设备实现

设置使用cpu

tensorflow中不同的GPU使用/gpu:0和/gpu:1区分,而CPU不区分设备号,统一使用 /cpu:0

import tensorflow as tf
 
with tf.device('/cpu:0'):
  v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1')
  v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2')
  sumV12 = v1 + v2
 
  with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
    print sess.run(sumV12)

详解tf.device()指定tensorflow运行的GPU或CPU设备实现

标签:
tensorflow运行GPU,tensorflow运行CPU

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。