这段时间看了数据分析方面的内容,对Python中的numpy和pandas有了最基础的了解。我知道如果我不用这些技能做些什么的话,很快我就会忘记。想起之前群里发过一个学校的四六级成绩表,正好可以用来熟悉一下pandas中的一些用法。

1.数据介绍。

成绩表中包含的字段十分详细,里面有年级、性别、姓名、分数等等的一系列内容,我只想简单的分析一下我们学校的四六级过关率而已,所以去除了一些不必要的字段。留下的有如下几个字段:

Python分析学校四六级过关情况

第一列是自增的序号,没有什么实际意义。

第二列就是代表着该学生参加的是四级还是六级。

第三列是我们学校的院系名称。

第四列是学校院系的各个专业。

第五列是年级,13代表着2013年入学。

第六列是性别。

后面的三列分别是总分、听力、阅读、写作等。

其中总分为0的都是缺考的。一共有接近9000条数据(没有报名的不在其中)。

2.预期结果。

我想利用这些数据最终通过图标的形式展示出以下几点:

1.各个学院的四六级平均分。

2.各个学院的四六级过关人数。

3.各个学院的各个年级过关人数。

4.各个年级的过关人数。

5.男生女生分别过关人数。

最终结果:

各个学院的四六级过关人数:

Python分析学校四六级过关情况

3.实现过程。

(1)导入依赖包。

程序分别使用了pandas进行分组转换,和matplotlib提供的绘图功能。

import pandas as pd
import matplotlib.pylab as plt

(2)加载数据。

想要分析数据自然要得到数据了,我将整理的数据存放在sj.xls中,是一个Excel类型的数据。
这一步使用pandas的read_excel即可,生成一个DataFrame对象。

#加载全部数据
sj = pd.read_excel(r'F:\DataAnalysis\sj.xls')

加载完之后输出一下看看内容:

Python分析学校四六级过关情况

除了排版没有对齐之外其他都一样。

(3)统计各个学院平均分。

在这里就可以完成我们预期的第一个结果:

各个学院的四六级平均分:

想要各个学院的情况当然是要根据学院来进行分组了,同时也需要分出“CET4”和“CET6”两组。使用groupby即可,这样会生成一个SeriesGroupBy对象,然后再调用mean函数(默认是轴0计算,也就是我们想要的结果)即可统计出平均分情况。

#按照各个学院进行分组
xymean = sj['总分'].groupby([sj['院系名称'],sj['语言级别']])

#计算各个学院的平均分数
xymean = xymean.mean()

这个时候将其输出的话会得到如下结果:

Python分析学校四六级过关情况

由于院系名称和语言级别是层次化索引的缘故,看起来并不是十分的友好,因此使用unstack将语言级别转从行转换为列。

xymean = xymean.unstack(level='语言级别')

再次输出的话结果就比较清晰了

Python分析学校四六级过关情况

使用pandas的绘图功能进行绘图:

#使用横向柱状图显示
xymean.plot(kind='barh')

#在PyCharm中需要使用,在Ipython环境中如果以--pylab形式打开就不需要
plt.show()

运行一下看看结果:

Python分析学校四六级过关情况

可以看到这时候数据的结果都能够显示出来了,但是中文部分出现了问题,不过不要紧,科学上网一查就解决了:https://github.com/mwaskom/seaborn/issues/1009

添加一下代码即可:

import matplotlib as mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['font.serif'] = ['SimHei']

再次运行就OK了。

Python分析学校四六级过关情况

接下来要分析过关的情况了。

(4)筛选数据。

既然已经有了所有的数据内容了,下一步就是筛选出所有过关的人数了。

#过滤出过关人数
sjpass = sj[sj['总分'] >= 425]

这时候sjpass存放的就是所有的过关人数了。

Python分析学校四六级过关情况

在输出结果的最下面就可以看到一共有1507行数据,当然也可以使用len()或者shape[0]查看共有多少行。

(5)各个学院的四六级过关人数。

已经有了全部过关人的数据了,接下来根据预期结果进行分组即可。同样的根据“院系名称”和“语言级别”对总分进行分组,然后使用count函数进行求和最后再用unstack进行调整绘图展示。

#按照各个学院进行分组
xypass = sjpass['总分'].groupby([sjpass['院系名称'],sjpass['语言级别']])


#计算各个学院的过关总人数
xypass = xypass.count()

#将语言级别作为columns
xypass = xypass.unstack(level='语言级别')

#进行绘图
xypass.plot(kind='barh')
plt.show()

绘图结果:

Python分析学校四六级过关情况

(6)各个学院的各个年级过关人数。。

这次分组的时候加上年级即可,并且为了绘图比较好看一点,这次可以将“年纪”转换为列,并且像12年这种的有些学员已经没有人参加了,所以需要将缺失值用0填充:

#按照各个学院和年级进行分组
xypass = sjpass['总分'].groupby([sjpass['院系名称'],sjpass['语言级别'],sjpass['年级']])

#计算各个学院的过关总人数
xypass = xypass.count()

#将语言级别作为columns,并且将缺失值用0进行填充
xypass = xypass.unstack(level='年级').fillna(0)

xypass.plot(kind='barh')
plt.show()

绘图结果:

Python分析学校四六级过关情况

(7)各个年级的过关人数。

使用groupby对年级进行分组即可:

#-----------------各个年级过关人数------------------
njpass = sjpass['总分'].groupby([sjpass['年级'],sjpass['语言级别']]).count().unstack(level='语言级别')
njpass.plot(kind='barh')
plt.show()

绘图结果:

Python分析学校四六级过关情况

(8)男生女生分别过关人数。

将性别和语言级别进行分组:

#---------------男生女生过关情况----------------------
nvpass = sjpass['总分'].groupby([sjpass['性别'],sjpass['语言级别']]).count().unstack(level='语言级别')
nvpass.plot(kind='bar')
plt.show()

绘图结果:

Python分析学校四六级过关情况

4.结果分析。

从绘图的结果上来看的话,各个学院之间音乐学院的平均分比较低,艺术设计和外国语学院的平均分都比较高,但是过关人数却没有那么的多,尤其是艺术设计的人数比较少,主要也是因为该学院的总人数比较少。

四级的过关人数明显比六级的人数多的多,而且因为15级是大二年级,在我们学校大二才可以参加四六级考试,所以过关的人数里面15级占有比较大的比分。

而且不得不承认,女生的过关率要比男生高的不止一点。

源码以及数据:https://github.com/jiajia0/DataAnalysis

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
Python分析学校四六级,Python分析四六级过关情况,Python分析四六级

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“Python分析学校四六级过关情况”
暂无“Python分析学校四六级过关情况”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。