k-近邻算法概述:

所谓k-近邻算法KNN就是K-Nearest neighbors Algorithms的简称,它采用测量不同特征值之间的距离方法进行分类

用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。

k-近邻算法分析

优点:精度高、对异常值不敏感、无数据输入假定。

缺点:计算复杂度高、空间复杂度高。

适用数据范围:数值型和标称型

k-近邻算法工作原理:

它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的的分类,作为新数据的分类。

"font-size: large">"text-align: center">K-近邻算法的python实现代码分享

编辑完成后保存,linux下确保当前路径为存储kNN.py文件的位置,进入python开发环境开始测试:

K-近邻算法的python实现代码分享

上图给出了点[0,0]、[1,0.9]的测试输出分类结果分别为B、A。至此,我们已经构造完成了一个分类器,使用这个分类器可以完成很多分类任务。从这个实例出发,构造使用分类算法将会更加容易。

分类器测试评估:

为了测试分类器的效果,需要对分类器做出评估,我们可以通过大量的测试数据得到分类器的错误率——分类器给出错误结果的次数除以测试执行的总数。错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0,在这种情况下,分类器根本就无法找到一个正确答案。

结束语:

本文首先对kNN做了简单介绍,通过了解其工作原理和实现流程,并使用k-近邻算法构造了分类器。我们也可以检验分类器给出的答案是否符合我们的预期。此外,还可以对分类器做大量的测试,并以错误率来评估该分类器的分类效果。

以上就是本文关于K-近邻算法的python实现代码分享的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题。如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

标签:
python,k近邻算法,k近邻算法,python实现,k,近邻算法python2,k,近邻算法python2.7

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“K-近邻算法的python实现代码分享”
暂无“K-近邻算法的python实现代码分享”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?