如下所示:

python 设置值
import pandas as pd
import numpy as np
dates = pd.date_range('20180101',periods=6)
df = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=['A','B','C','D'])
print(df)
    A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
df.loc['20180102','A'] = 1111
print(df)
    A B C D
2018-01-01  0 1 2 3
2018-01-02 1111 5 6 7
2018-01-03  8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
df.iloc[2,2] = 2222
print(df)
    A B  C D
2018-01-01  0 1  2 3
2018-01-02 1111 5  6 7
2018-01-03  8 9 2222 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
df[df.A>12]=0 #修改df数据中符合条件的所有值
print(df)
    A B  C D
2018-01-01 0 1  2 3
2018-01-02 0 0  0 0
2018-01-03 8 9 2222 11
2018-01-04 12 13 14 15
2018-01-05 0 0  0 0
2018-01-06 0 0  0 0
df.A[df.A<4]=11 #修改df数据中A列符合条件的所有值
print(df)
    A B  C D
2018-01-01 11 1  2 3
2018-01-02 11 0  0 0
2018-01-03 8 9 2222 11
2018-01-04 12 13 14 15
2018-01-05 11 0  0 0
2018-01-06 11 0  0 0
df['F'] = np.nan
print(df)
    A B  C D F
2018-01-01 11 1  2 3 NaN
2018-01-02 11 0  0 0 NaN
2018-01-03 8 9 2222 11 NaN
2018-01-04 12 13 14 15 NaN
2018-01-05 11 0  0 0 NaN
2018-01-06 11 0  0 0 NaN
print(np.any(df.isnull())== True) #isnull检测是否含有NaN值,有就返回True。np.any()检测df数据中是否含有等于Ture的值
True

NaN值填充:print(df.fillna(value=0))

以上这篇python设置值及NaN值处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,NaN

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“python设置值及NaN值处理方法”
暂无“python设置值及NaN值处理方法”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?