read_csv是pandas中专门用于csv文件读取的功能,不过这并不是唯一的处理方式。pandas中还有读取表格的通用函数read_table。

接下来使用read_table功能作一下csv文件的读取尝试,使用此功能的时候需要指定文件中的内容分隔符。

查看csv文件的内容如下;

In [10]: cat data.csv
index,name,comment,,,,
1,name_01,coment_01,,,,
2,name_02,coment_02,,,,
3,name_03,coment_03,,,,
4,name_04,coment_04,,,,
5,name_05,coment_05,,,,
6,name_06,coment_06,,,,
7,name_07,coment_07,,,,
8,name_08,coment_08,,,,
9,name_09,coment_09,,,,
10,name_10,coment_10,,,,
11,name_11,coment_11,,,,
12,name_12,coment_12,,,,
13,name_13,coment_13,,,,
14,name_14,coment_14,,,,
15,name_15,coment_15,,,,
16,name_16,coment_16,,,,
17,name_17,coment_17,,,,
18,name_18,coment_18,,,,
19,name_19,coment_19,,,,
20,name_20,coment_20,,,,
21,name_21,coment_21,,,,

使用pandas读取文件内容如下:In [11]: data1 = pd.read_table('data.csv',sep=',')

In [12]: type(data1)
Out[12]: pandas.core.frame.DataFrame
In [13]: data1
Out[13]: 
 index  name comment Unnamed: 3 Unnamed: 4 Unnamed: 5 Unnamed: 6
0  1 name_01 coment_01   NaN   NaN   NaN   NaN
1  2 name_02 coment_02   NaN   NaN   NaN   NaN
2  3 name_03 coment_03   NaN   NaN   NaN   NaN
3  4 name_04 coment_04   NaN   NaN   NaN   NaN
4  5 name_05 coment_05   NaN   NaN   NaN   NaN
5  6 name_06 coment_06   NaN   NaN   NaN   NaN
6  7 name_07 coment_07   NaN   NaN   NaN   NaN
7  8 name_08 coment_08   NaN   NaN   NaN   NaN
8  9 name_09 coment_09   NaN   NaN   NaN   NaN
9  10 name_10 coment_10   NaN   NaN   NaN   NaN
10  11 name_11 coment_11   NaN   NaN   NaN   NaN
11  12 name_12 coment_12   NaN   NaN   NaN   NaN
12  13 name_13 coment_13   NaN   NaN   NaN   NaN
13  14 name_14 coment_14   NaN   NaN   NaN   NaN
14  15 name_15 coment_15   NaN   NaN   NaN   NaN
15  16 name_16 coment_16   NaN   NaN   NaN   NaN
16  17 name_17 coment_17   NaN   NaN   NaN   NaN
17  18 name_18 coment_18   NaN   NaN   NaN   NaN
18  19 name_19 coment_19   NaN   NaN   NaN   NaN
19  20 name_20 coment_20   NaN   NaN   NaN   NaN
20  21 name_21 coment_21   NaN   NaN   NaN   NaN

不过在几番尝试下来,发现这个分隔符缺省的时候倒是也能够读出数据。

In [16]: data2 = pd.read_table('data.csv')
In [17]: data2
Out[17]: 
  index,name,comment,,,,
0 1,name_01,coment_01,,,,
1 2,name_02,coment_02,,,,
2 3,name_03,coment_03,,,,
3 4,name_04,coment_04,,,,
4 5,name_05,coment_05,,,,
5 6,name_06,coment_06,,,,
6 7,name_07,coment_07,,,,
7 8,name_08,coment_08,,,,
8 9,name_09,coment_09,,,,
9 10,name_10,coment_10,,,,
10 11,name_11,coment_11,,,,
11 12,name_12,coment_12,,,,
12 13,name_13,coment_13,,,,
13 14,name_14,coment_14,,,,
14 15,name_15,coment_15,,,,
15 16,name_16,coment_16,,,,
16 17,name_17,coment_17,,,,
17 18,name_18,coment_18,,,,
18 19,name_19,coment_19,,,,
19 20,name_20,coment_20,,,,
20 21,name_21,coment_21,,,,

不知道此功能对其他格式的数据的读取功能会不会有自动识别的功能,需要继续确认。

以上这篇使用pandas read_table读取csv文件的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
read,table,读取csv

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“使用pandas read_table读取csv文件的方法”
暂无“使用pandas read_table读取csv文件的方法”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?