mnist作为最基础的图片数据集,在以后的cnn,rnn任务中都会用到

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

#数据集存放地址,采用0-1编码
mnist = input_data.read_data_sets('F:/mnist/data/',one_hot = True)
print(mnist.train.num_examples)
print(mnist.test.num_examples)

trainimg = mnist.train.images
trainlabel = mnist.train.labels
testimg = mnist.test.images
testlabel = mnist.test.labels

#打印相关信息
print(type(trainimg))
print(trainimg.shape,)
print(trainlabel.shape,)
print(testimg.shape,)
print(testlabel.shape,)

nsample = 5
randidx = np.random.randint(trainimg.shape[0],size = nsample)

#输出几张数字的图
for i in randidx:
  curr_img = np.reshape(trainimg[i,:],(28,28))
  curr_label = np.argmax(trainlabel[i,:])
  plt.matshow(curr_img,cmap=plt.get_cmap('gray'))
  plt.title(""+str(i)+"th Training Data"+"label is"+str(curr_label))
  print(""+str(i)+"th Training Data"+"label is"+str(curr_label))
  plt.show()

程序运行结果如下:

Extracting F:/mnist/data/train-images-idx3-ubyte.gz
Extracting F:/mnist/data/train-labels-idx1-ubyte.gz
Extracting F:/mnist/data/t10k-images-idx3-ubyte.gz
Extracting F:/mnist/data/t10k-labels-idx1-ubyte.gz
55000
10000
<class 'numpy.ndarray'>
(55000, 784)
(55000, 10)
(10000, 784)
(10000, 10)
52636th 

输出的图片如下:

Training Datalabel is9

tensorflow实现加载mnist数据集

下面还有四张其他的类似图片

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
tensorflow,mnist,数据集

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“tensorflow实现加载mnist数据集”
暂无“tensorflow实现加载mnist数据集”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。