本文实例为大家分享了python使用插值法画出平滑曲线的具体代码,供大家参考,具体内容如下

实现所需的库

numpy、scipy、matplotlib

实现所需的方法

插值

  • nearest:最邻近插值法
  • zero:阶梯插值
  • slinear:线性插值
  • quadratic、cubic:2、3阶B样条曲线插值

拟合和插值的区别

简单来说,插值就是根据原有数据进行填充,最后生成的曲线一定过原有点。

拟合是通过原有数据,调整曲线系数,使得曲线与已知点集的差别(最小二乘)最小,最后生成的曲线不一定经过原有点。

代码实现

# -*- coding: utf-8 -*-

# 调用模块
# 调用数组模块
import numpy as np
# 实现插值的模块
from scipy import interpolate
# 画图的模块
import matplotlib.pyplot as plt
# 生成随机数的模块
import random

# random.randint(0, 10) 生成0-10范围内的一个整型数
# y是一个数组里面有10个随机数,表示y轴的值
y = np.array([random.randint(0, 10) for _ in range(10)])
# x是一个数组,表示x轴的值
x = np.array([num for num in range(10)])

# 插值法之后的x轴值,表示从0到9间距为0.5的18个数
xnew = np.arange(0, 9, 0.5)

"""
kind方法:
nearest、zero、slinear、quadratic、cubic
实现函数func
"""
func = interpolate.interp1d(x, y, kind='cubic')
# 利用xnew和func函数生成ynew,xnew的数量等于ynew数量
ynew = func(xnew)

# 画图部分
# 原图
plt.plot(x, y, 'ro-')
# 拟合之后的平滑曲线图
plt.plot(xnew, ynew)
plt.show()

注意事项/p>

  • x, y为原来的数据(少量)
  • xnew为一个数组,条件:x⊆⊆xnew
  •       如:x的最小值为-2.931,最大值为10.312;则xnew的左边界要小于-2.931,右边界要大于10.312。当然也最好注意一下间距,最好小于x中的精度
  • func为函数,里面的参数x、y、kind,x,y就是原数据的x,y,kind为需要指定的方法
  • ynew需要通过xnew数组和func函数来生成
  • 理论上xnew数组内的值越多,生成的曲线越平滑

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,插值法,曲线

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“python使用插值法画出平滑曲线”
暂无“python使用插值法画出平滑曲线”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?