如下所示:

beta分布的最大特点是其多样性, 从下图可以看出, beta分布具有各种形态, 有U形, 类似正态分布的形状, 类似uniform分布的形状等, 正式这一特质使beta分布在共轭先验的计算中起到重要作用:

import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
from matplotlib import style
style.use('ggplot')
params = [0.5, 1, 2, 3]
x = np.linspace(0, 1, 100)
f, ax = plt.subplots(len(params), len(params), sharex=True, sharey=True)
for i in range(4):
  for j in range(4):
    alpha = params[i]
    beta = params[j]
    pdf = stats.beta(alpha, beta).pdf(x)
    ax[i, j].plot(x, pdf)
    ax[i, j].plot(0, 0, label='alpha={:3.2f}\nbeta={:3.2f}'.format(alpha, beta), alpha=0)
    plt.setp(ax[i, j], xticks=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0], yticks=[0,2,4,6,8,10])
    ax[i, j].legend(fontsize=10)
ax[3, 0].set_xlabel('theta', fontsize=16)
ax[0, 0].set_ylabel('pdf(theta)', fontsize=16)
plt.suptitle('Beta PDF', fontsize=16)
plt.tight_layout()
plt.show()

python实现beta分布概率密度函数的方法

以上这篇python实现beta分布概率密度函数的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,beta分布,概率密度函数

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
评论“python实现beta分布概率密度函数的方法”
暂无“python实现beta分布概率密度函数的方法”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?